Air Quality

Calibration Certificates for Air Quality

ALS Technichem (HK) Pty Ltd

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT

: MR K.W. FAN

WORK ORDER

HK2240047

CLIENT

: ENVIROTECH SERVICES CO.

SUB-BATCH

ADDRESS

: RM 712, 7/F, MY LOFT 9 HOI WING ROAD,

DATE RECEIVED : 11-OCT-2022

TUEN MUN, N.T., HK

DATE OF ISSUE : 20-OCT-2022

NO. OF SAMPLES : 1

CLIENT ORDER

: 1

PROJECT

General Comments

 Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.

- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.
- Calibration was subcontracted to and analysed by Action-United Environmental Services & Consulting.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

Richard Fung

Managing Director

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N T Hong Kong Kwai Tsing Hong Kong

WORK ORDER

: HK2240047

SUB-BATCH

• 1

: ENVIROTECH SERVICES CO.

CLIENT PROJECT

ALS

ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.	
HK2240047-001	S/N: 336338	Equipments	11-Oct-2022	S/N: 336338	

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:

Laser Dust monitor

Manufacturer:

Sibata LD - 3B

Serial No.

336338

Equipment Ref:

NA

Job Order

HK2240047

Standard Equipment:

Standard Equipment:

Higher Volume Sampler (TSP)

Location & Location ID:

AUES office (calibration room)

Equipment Ref:

HVS 018

Last Calibration Date:

13 September 2022

Equipment Verification Results:

Verification Date:

14 October 2022

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in ug/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr15mins	09:33 ~ 11:48	26.9	1012.1	44.6	2621	19.5
2hr01 mins	11:51 ~ 13:52	26.9	1012.1	45.7	2722	22.6
2hr01 mins	13:55 ~ 15:56	26.9	1012.1	56.6	2922	24.1

60

50

30

20 10

Linear Regression of Y or X

Slope (K-factor):

2.2211 (µg/m³)/CPM

Correlation Coefficient (R)

0.9920

Date of Issue

17 October 2022

Remarks:

Strong Correlation (R>0.8) 1.

Factor 2.2211 (µg/m³)/CPM should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator : _____ Fai So

Signature:

Date : <u>17 October 2022</u>

- 2.2211x - 0.0341

QC Reviewer : Ben Tam

Signature:

Date : <u>17 October 2022</u>

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location:

Gold King Industrial Building, Kwai Chung

Date of Calibration: 13-Sep-22

Location ID:

Calibration Room

Next Calibration Date: 13-Dec-22

CONDITIONS

Sea Lével Pressure (hPa) Temperature (°C)

1007.3 31.7

Corrected Pressure (mm Hg) Temperature (K)

755.475

CALIBRATION ORIFICE

Make-> TISCH Model-> 5025A Calibration Date-> 27-Dec-21

Ostd Slope -> Qstd Intercept -> Expiry Date->

CALIBRATION

1					인단			
		H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
	No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
	18	6	6	12.0	1.714	54	53.24	Slope = 30.1792
1	13	4.9	4.9	9.8	1.549	48	47.33	Intercept = 1.5486
	10	3.7	3.7	7.4	1.347	44	43.38	Corr. coeff. = 0.9961
	8	2.5	2.5	5.0	1.108	36	35.50	- 1
ı	5	1.6	1.6	3.2	0.887	28	27.61	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

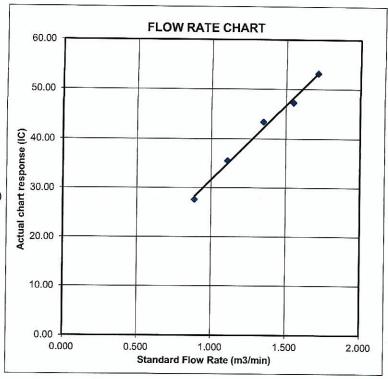
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pay = daily average pressure

RECALIBRATION DUE DATE:

December 27, 2022

Certificate of Calibration

Calibration Certification Information

Cal. Date: December 27, 2021

Rootsmeter S/N: 438320

Ta: 295

Pa: 740.4

°K

Operator: Jim Tisch

Calibration Model #: TE-5025A

Calibrator S/N: 1612

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3890	3.2	2.00
2	3	4	1	0.9760	6.4	4.00
3	5	6	1	0.8740	7.9	5.00
4	7	8	1	0.8320	8.8	5.50
5	9	10	1	0.6870	12.7	8.00

		Data Tabula	tion		
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H(Ta/Pa)}$
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
0.9799	0.7055	1.4029	0.9957	0.7168	0.8927
0.9756	0.9996	1.9841	0.9914	1.0157	1.2624
0.9736	1.1140	2.2183	0.9893	1.1320	1.4114
0.9724	1.1688	2.3265	0.9881	1.1876	1.4803
0.9673	1.4079	2.8059	0.9828	1.4306	1.7853
	m=	1.99838		m=	1.25135
QSTD	b=	-0.00903	QA	b=	-0.00574
	r=	0.99999	•	r=	0.99999

	Calculation	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime
3500 1100057708.053	For subsequent flow rat	e calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$

	Standard Conditions	
Tstd:	298.15 °K	
Pstd:	760 mm Hg	
	Key	
ΔH: calibrator	manometer reading (in H2O)	
ΔP: rootsmete	er manometer reading (mm Hg)	
Ta: actual abs	olute temperature (°K)	
Pa: actual bar	ometric pressure (mm Hg)	
b: intercept		
m: slope		

RECALIBRATION

US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.cc

TOLL FREE: (877)263-761

FAX: (513)467-90

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

SUB-CONTRACTING REPORT

CONTACT

: MR MAGNUM FAN

WORK ORDER

SUB-BATCH

HK2312356

CLIENT

: ENVIROTECH SERVICES CO.

TUEN MUN, N.T., HK

ADDRESS

: 1

RM 712, 7/F, MY LOFT 9 HOI WING ROAD,

DATE RECEIVED : 31-MAR-2023

DATE OF ISSUE : 11-APR-2023

PROJECT

NO. OF SAMPLES : 1

CLIENT ORDER

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in amblent condition. The result(s) related only to the
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.
- Calibration was subcontracted to and analysed by Envirotech Services Company

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

Richard Fung

Managing Director

WORK ORDER SUB-BATCH

: HK2312356

CLIENT

: ENVIROTECH SERVICES CO.

Envirotech Services Co.

Rm. 712, 7/F KM. 712, 7/F My Loft, 9 Hoi Wing Road, Yuen Mun, H.K. Tel: 2580 8450 Fax: 2580 6553 E-mail: envirotech®

Equipment Verification Report (TSP)

Equi	pment	Calib	rated:

Type:

Laser Dust Monitor

Manufacturer:

Sibata LD-3B

Serial No.:

6Z7784

Equipment Ref.:

N/A

Job Order:

HK2311344

Standard Equipment

Standard Equipment:

High Volume Sampler (TSP)

Location & Location ID:

Envirotech Room (Calibration Room)

Equipment Ref.:

HVS 8162

Last Calibration Date:

28-Feb-2023

Equipment Verification Results:

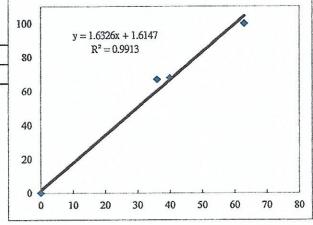
Verification Date:

17 & 18 March 2023

Hour	Time	Mean Temp °C	Mean Pressure (hpa)	Concentration in µg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count /Minute (Total Count/min)
1hr 00mins	1410-1510	24.2	1018.2	100	3780	63
1hr 00mins	0810-0910	22.2	1021.5	67	2162	36
1hr 00mins	1510-1610	25.0	1022.4	68	2405	40

Linear Regression of Y or X

Slope (K-factor):


1.6326(µg/m³)/CPM

Correlation Coefficient (R):

0.9956

Date of Issue:

29-Mar-2023

Remarks:

1. Strong Correlation (>0.8)

2. Factor 1.6326 (µg/m³)/CPM should be applied for TSP monitoring

Operator:

Signature P.F.Yeung

Date: 29 March 2023

QC Reviewer:

K.F.Ho

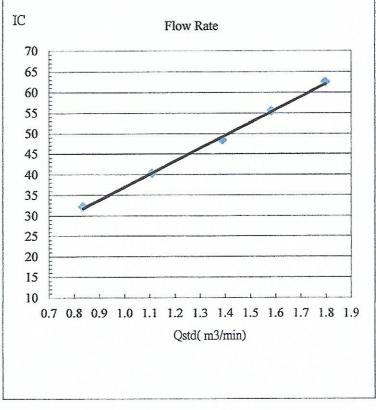
Signature

Date: 29 March 2023

^{*}If R<0.5, repair or verification is required for the equipment

TSP SAMPLER CALIBRATION CACULATION SPREADSHEET

		, My Lo	ft, Tuen M	ın			Date of Calib		28-Feb-23
HVS ID:	8162				450		Next Calibrat	ion Date:	28-Apr-23
Name and	Model:	TISCH	HVS Mode			NATO.	Operator:		K.F.Ho
				CONI	DITIC	NN2			
	Sea Leve	el Pressi	ire (hpa)		1021		Corrected Pre	essure (mm Hg)	764.3
	Tempera		, , ,		22.0		Temperature		295
	Tompore	uuro (O	,	L					
				CALI	BRA'	TION C	RIFICE		
			Make:	T m	SCH		Qstd Slope		2.06918
			Model:	TE-50			Qstd Intercep	t İ	-0.04220
			Serial#:		2454		Cara amora a p		and the same of th
<u>.</u>									
				CALI	BRA'	ION			
Plate	H2O(L)	H20(R)	H2O	Qs	td	I	IC		LINEAR
No.	(in)	(in)	(in)	(m3/1	min)	(chart)	(corrected)		REGRESSION
18	6.7	6.6	13.3	1.7	97	62	62.51	Slope=	31.428
13	5.2	5.1	10.3	1.5	84	55	55.45	Intercept=	5.569
10	4.0	3.9	7.9	1.3	90	48	48.39	Corr. Coeff.=	0.9990
7	2.5	2.5	5.0	1.1	10	40	40.33	i shirt	
5	1.4	1.4	2.8	0.8	36	32	32.26	L	
Calulations									
		Pa/Petd\(Tstd/Ta))-b]		IC			Flow Rate	
Qsta = 1/m [C = I[Sqrt(1300/14//-0]					riow Rate	
	1 4/1 5(4)(1)	Jun 1473			7(E			
Qstd = stand	dard flow r	ate			65	E			À
IC = correct					60	E			
= actual cl		•			55	E		/	
m = calibrator Qstd slope					50 45	E			
b = calibrator Qstd intercept					4:	E			
			calibration (deg K)	35	E			
Pa = actual	pressure di	uring cali	bration (mm	Hg)	30	E			
	1507 (150)	1127,560			25	E			
For subsequ	ent calcul	ation of s	ampler flow	:	20	E			
For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)						J			


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION **DUE DATE:**

December 15, 2023

Calibration Certification Information

Cal. Date: December 15, 2022 Rootsmeter 5/N: 438320

Ta: 295

Pa: 748.0

°K

mm Hg

Operator: Jim Tisch Calibration Model #:

TE-5025A

Calibrator S/N: 4064

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4430	3.2	2.00
2	3	4	1	1.0210	6.4	4.00
3	5	6	1	0.9170	7.9	5.00
4	7	8	1	0.8730	8.8	5.50
5	9	10	1	0.7210	12.8	8.00

	Data Tabulation								
Vstd	Qstd	$\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)				
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)				
0.9900	0.6861	1.4101	0.9957	0.6900	0.8881				
0.9858	0.9655	1.9943	0.9914	0.9711	1.2560				
0.9838	1.0728	2.2296	0.9894	1.0790	1.4042				
0.9826	1.1255	2.3385	0.9882	1.1320	1.4728				
0.9772	1.3554	2.8203	0.9829	1.3632	1.7762				
	m=	2.10977		m=	1.32110				
QSTD	b=	-0.03782	QA	b=	-0.02382				
	r=	0.99998	•	r=	0.99998				

	Calculation	าร	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	std= Vstd/ΔTime Qa= Va/ΔTime		Va/ΔTime
	For subsequent flow rat	te calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

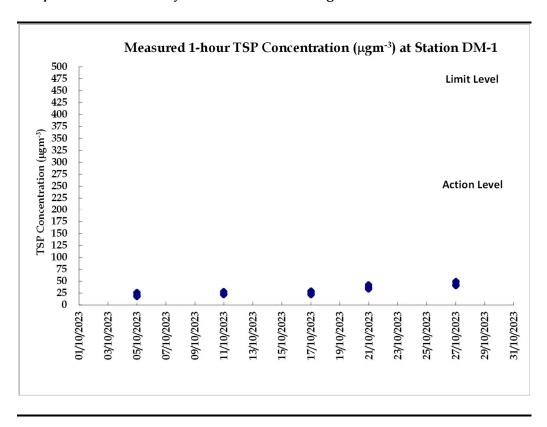
Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.con

TOLL FREE: (877)263-7610 FAX: (513)467-900

Monitoring Schedule for Air Quality

Tung Chung New Town Extension (East)

Air Quality Monitoring Schedule (October 2023)


Sunday	Monday	Tuesday		Thursday	Friday	Saturday
1-Oct		3-Oct	4-Oct		6-Oct	7-Oct
				Air Quality Monitoring		
8-Oct	9-Oct	10-Oct	11-Oct	12-Oct	13-Oct	14-Oct
			Air Quality Monitoring			
15-Oct	16-Oct	17-Oct	18-Oct	19-Oct	20-Oct	21-Oct
		Air Quality Monitoring				Air Quality Monitoring
22-Oct	23-Oct	24-Oct	25-Oct	26-Oct	27-Oct	28-Oct
					Air Quality Monitoring	
29-Oct	30-Oct	31-Oct				

Monitoring Results for Air Quality

Table E3 Data for 1-hr TSP Monitoring at Station DM-1

Date	Start Time	Finish Time	Weather	1-hour TSP (μg/m³)
10/5/2023	13:10	14:10	Sunny	18
10/5/2023	14:10	15:10	Sunny	26
10/5/2023	15:10	16:10	Sunny	21
10/11/2023	9:03	10:03	Cloudy	22
10/11/2023	10:03	11:03	Cloudy	23
10/11/2023	11:03	12:03	Cloudy	28
10/17/2023	9:04	10:04	Sunny	26
10/17/2023	10:04	11:04	Sunny	22
10/17/2023	11:04	12:04	Sunny	29
10/21/2023	13:02	14:02	Cloudy	34
10/21/2023	14:02	15:02	Cloudy	37
10/21/2023	15:02	16:02	Cloudy	42
10/27/2023	13:04	14:04	Sunny	41
10/27/2023	14:04	15:04	Sunny	43
10/27/2023	15:04	16:04	Sunny	49

Figure E3 Graphical Presentation for 1-hr TSP Monitoring at Station DM-1

Event and Action Plan for Air Quality

Annex E4 Event and Action Plan for Air Quality

Event	Action				
Event	ET	IEC	ER	Contractor	
Action level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 	
Action level exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	failure in writing;2. Notify Contractor;3. Ensure remedial measures properly implemented.	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 	

T	Action					
Event	ET	IEC	ER	Contractor		
Limit level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	failure in writing; 2. Notify Contractor; 3. Ensure remedial measures properly implemented.	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 		
Limit level exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 		